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The book provides a baseline of understanding and additionally it 
directs the reader to resources that encourage them to develop their 
studies further and has materials that should be of value throughout 
a university degree.

Tools used in the book

In addition to providing a rich source of information, the book uses a 
number of educational tools to aid understanding:

•	 The book is split into six parts, each with a part opener that 
describes the main themes of that part of the book and the links 
between the chapters within that part.

•	 Learning objectives clearly outline the purpose and aims of a 
particular chapter to help locate the reader within the book.

•	 Boxed features explore and illustrate topics and concepts 
through real-world examples. Scattered throughout every 
chapter, these insightful applications are differentiated into the 
following types:

•	 case studies;

•	 fundamental principles;

•	 techniques;

•	 hazards;

•	 new directions.

•	 Reflective questions invite the reader to think about, and 
further explore, what they have just read. Useful for consoli-
dating learning, these questions are found at the end of each 
major section of every chapter.

•	 A summary draws together the key ideas of the chapter, 
reflecting the learning objectives for that chapter.

•	 An annotated list of five further readings aims to inspire and 
enable deeper exploration into a topic. The reading lists include 
important papers as well as textbooks. Longer lists of further 
reading for each chapter are found on the companion website.

•	 The comprehensive glossary serves as an additional resource 
to help clarify concepts discussed within the book. Key words 
defined in the glossary are highlighted in the text the first time 
they appear in each chapter.

It is exciting being a physical geographer because you learn about 
environments around the world, how they function, and why they 
are shaped the way they are. Through this understanding we can see 
how humans have impacted the Earth and how human activities are 
influenced by environmental processes. Our understanding of the 
world is rapidly changing and I am continually amazed at the new 
discoveries that are made about how the world works.

This new edition provides chapters from 21 contributors who are 
all international experts in their field. Each of the chapters covers a 
wide range of material including core principles of the subject as well 
as new findings from ongoing research.The chapters are fully illus-
trated using diagrams and photographs from environments around 
the world. Between them, the contributors have researched in detail 
every environment on the planet. The chapters provide an unrivalled 
source of rich information from around the world for all budding 
physical geographers.

The book seeks to help you understand geographical processes 
and tackles the interlinkages between processes, places and environ-
ments. I hope that the book engages and inspires you and makes you 
ask new questions about the physical environment. I encourage you 
to use your geographical skills to seek answers to those questions 
and to share your discoveries with others.

Scope of the book

Physical geography is of wide interest and immense importance. It 
deals with the processes associated with climate, landforms, oceans 
and ecosystems of the world. The Earth has always been subject to 
changes in these systems and studying physical geography allows us to 
understand how Earth systems have come to operate as they do today. 
It also provides us with insights into how they may operate in the 
future. The impacts that humans have made on the Earth’s environ-
ments are ever increasing as the world’s population approaches eight 
billion. Thus the Earth’s systems will change in the future both naturally 
and in a forced way through human action. However, it will be crucial 
to understand, manage and cope with such change and this can be 
achieved only by understanding the processes of physical geography. 
This text is aimed at those embarking on a university course and pro-
vides an introduction to the major subjects of physical geography.  
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•	 Further reading: an annotated list of further reading material for 
each chapter.

•	 Annotated weblinks: several hundred annotated additional 
websites for students to further explore a topic. There are 
weblinks listed for each chapter.

•	 Interactive models for practical learning: these models give 
students the opportunity to explore and understand environ-
mental processes and the principles of modelling.

I hope that you are able to use the rich interactive resources that this 
book provides to further your learning and exploration of the subject 
of physical geography and the environment.

Joseph Holden
January 2017

Companion website

The book also has a dedicated website at www.pearsoned.co.uk/
holden on which there is a suite of other educational resources for 
both students and lecturers alike.

Lecturer resources

These contain:

•	 PowerPoint slides: a set of slides for every chapter comprising 
bulleted outlines of core topics and the key figures and images 
from the main text.

•	 Field exercise ideas: suggestions for activities that can be done 
in the field.

Student resources

These contain:

•	 Multiple-choice questions: a set of interactive questions for 
every chapter that allow students to test and consolidate their 
understanding.
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The role of physical geography

Part contents

➤ Chapter 1: Approaching physical geography

Figure PI.1 Physical geographers often collect samples and take 
 measurements from instruments. However, there has to be a 
 justification for taking such measurements and so one should start 
with a question or hypothesis that data collection in the field,  laboratory 
or numerical model then tries to answer or test.
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patterns that characterize the living portion of the Earth. Physical 
geography involves the application of technology to study these 
components and changes within them. For example, remote sens-
ing from space provides an aid to monitoring the world’s constantly 
changing natural and human landscapes, the oceans, atmosphere 
and biosphere.

Geographers often say that they study the ‘why of where’. By this 
they mean that they seek to explain the underlying processes that 
result in the patterns of natural phenomena and the ways in which 
humans interact with, and alter, these processes and patterns. In 
addition to a spatial context, change over time is also a central theme 
to physical geography.

It is important to be aware of the ways in which physical geog-
raphers study physical geography. Some kind of theoretical basis of 
enquiry is essential in order to allow fair comparisons of results and 
interpretation of conclusions between different research areas. The 
scientific methods discussed in Chapter 1 help to form this philo-
sophical foundation. The underlying method does not necessarily 
mean that all research is done using the same techniques; indeed 
physical geography utilizes a variety of tools to help understand, 
measure, observe and predict environmental processes. However, 
by maintaining a philosophical basis, it reminds us to question the 
approach we take. In recent years, emphasis has shifted from a 
position where science  represents the ultimate authority informing 
society, to a realization that science is itself influenced by society, and 
that many other sources of knowledge must be equally considered. 
Consideration of the advantages and limitations of a given approach 
is therefore vital so that we can assess the reliability and usefulness 
of the conclusions attained.

Scope

Scientific disciplines are constantly evolving, adopting new 
approaches and techniques and moving into previously  unthought-of 
areas. Part I contains a chapter which deals with the development of 
physical geography as a subject and the sorts of general approaches 
adopted by physical geographers to understand how the world works. 
The chapter provides context that explains why we approach the 
subject in particular ways today. It describes the basic frameworks 
for studying science and explains the roles of data collection from 
the natural environment, laboratory work and modelling. It describes 
the advantages and disadvantages of a range of approaches that we 
should be aware of when studying physical geography. It therefore 
sets the scene for the rest of the book by providing the reader with 
an appropriate grounding in the nature of the subject.

What do we mean by physical geography?

Physical geography is about understanding interactions of  processes 
involving the Earth’s climate system, oceans, landforms, animals, 
plants and people. This understanding requires linking the  physical 
systems together and relating human actions to the physical 
 environment. Of interest to physical geographers are the mechanisms 
that maintain flows of energy and matter across the Earth. There are 
components of study which include processes associated with plate 
tectonics, geomorphology, climatology, glaciology and hydrology 
that shape the surface of the Earth; the collection of climatic and 
atmospheric processes acting as one of the ultimate controls on the 
landscape and biosphere; and the ecological and biogeographical 
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with a wide range of processes that affect the landscape 
of the Earth. For example, plate tectonic processes are 
responsible for mountain building, the movement of the 
continents, ocean floor spreading, ecological isolation and 
 changing climate. In addition, the landscape is worn down 
by weathering and erosion processes, many of which 
are driven by gravity and water (in solid, liquid and gas 
form). Water also transports nutrients from soils to plants 
and from rocks and soils to rivers and into the oceans. It 
transports nutrients and energy around the globe through 
the oceans and the atmosphere. It moves sediments across 
hillslopes, catchments and seas. Understanding the variety 
of processes that link the components shown in Figure 1.1 
(atmosphere, oceans, landforms and biosphere) at global 
and small scales enables improved prediction of future 
change of the Earth’s environmental systems.

A range of tools are available to physical geographers 
in order to help us understand, measure, observe and 
predict environmental processes. These include tried 
and tested methods along with new technologies such as 
advanced probes and laboratory methods or geophysi-
cal and remote sensing tools that allow us to measure 
the Earth’s features and processes remotely. For example, 
after spending a few minutes taking a series of photo-
graphs from slightly different locations around a feature 
such as a gully, a gravel river bank, a tree or a building it 

Learning objectives

After reading this chapter you should be able to:

➤	 describe the historical development of physical geography as a 

subject

➤	 understand basic scientific methods

➤	 evaluate methods for different types of research in physical 

geography

➤	 appreciate the advantages and limitations of different 

approaches to physical geography

1.1 Introduction

The physical environment affects most aspects of our daily 
lives. It is fundamental to human existence. For example, 
it determines water availability and water quality, weather 
and climate, soil systems, potential for agriculture, the 
risk of landslides or other hazards, and if and how we 
can travel from one place to the next. Physical  geography 
involves the study of the interconnected features of 
the Earth (Figure 1.1). It deals with the Earth’s climate 
 system, which results from a combination of atmospheric, 
oceanic, land, ice and ecological processes. It also deals 

Approaching physical geography

Joseph Holden
School of Geography, University of Leeds
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is possible to use freely available Structure from Motion 
 software to produce a 3D image on a computer of the 
feature and from this image it is possible to measure 
the  dimensions of the feature in high resolution (e.g. to the 
nearest  millimetre) (see Chapter 25). This sort of approach 
can save a lot of time undertaking painstaking field 
survey measurements, and has an almost infinite range 
of  applications. Another example might be the growing 
use of ‘flux towers’ (Figure 1.2), which are ground-based 
instruments that can measure the net release or uptake of 
carbon dioxide (CO2), methane, water vapour or energy 
across a sampling area such as a large field or a section of 
forest. These devices may take measurements every second 
and can be used to tell us whether the landscape is acting 
as a net sink or a net source of carbon to the atmosphere 
and also how this varies over days, months and years.

Field study, remote sensing, laboratory work and 
numerical modelling are all important components of 
the method of physical geography today. However, each 
particular approach and method has its limitations. No 
matter what type of measurement device or approach is 
used, it is often how it is used and why it is being used in 
those ways which are important. In other words,  scientific 
approaches have a philosophical underpinning which 
can be evaluated. There are a range of approaches to 
science and physical geography and each approach has 
advantages and disadvantages. It is therefore necessary to 
 understand these methods and their limitations so that we 
can: (i)  evaluate which are the most appropriate methods 
to use for a given environmental investigation and (ii) fully 

Figure 1.1 Components of the changing 
environment. The atmosphere, oceans, 
biosphere and landforms all interact with 
each other. Important links within the system 
include H2O in its different forms, tectonics, 
ecological processes and humans.

Atmosphere

Oceans

Biosphere

Gravity

Solar energy

Humans

Climate

Ecological processes

Landforms
H2O (ice–water–water vapour)

Tectonics

Figure 1.2 A flux tower on a peatland which can be left to run 
 automatically. The instruments on the tower are used for measuring the 
uptake and release by the landscape of CO2, energy and water vapour.

evaluate the implications of any given research finding in 
physical geography.

The approaches that physical geographers have used 
have varied through time as the subject has developed. 
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in China with advanced triangulation techniques  allowing 
exceptionally good quality maps of the region to be pro-
duced from the first century AD onwards. For the last 
2000 years many official Chinese historical texts have 
contained a geographical section, which was often an 
enormous compilation of changes in placenames and local 
administrative divisions controlled by the ruling dynasty, 
descriptions of mountain ranges, river systems, taxable 
products and so on.

While science was slow to progress in Europe 
before the sixteenth century, with the Renaissance 
(∼140091600 AD) came a renewed interest in the geo-
graphical knowledge of the ancients (which the Arab and 
Chinese scientists had already advanced significantly) 
and a willingness to test and refine their theories. The 
European explorations of the fifteenth and sixteenth 
centuries were part of a major period of invention and 
discovery. Improvements in measuring devices such as 
timekeepers and in mapping and printing techniques 
were combined with a new geographical knowledge 
about the world. Indeed many of these new technolo-
gies had roots in the pursuit of geographical knowledge. 
For example, methods for accurately keeping time were 
developed when stable navigation systems that could 
determine the longitude (east–west position) of a ship 
were invented. As the Earth is constantly rotating, know-
ing the time while making an altitude measurement to 
a known star or the Sun provided data to accurately 
 calculate longitude. The experiences of the explorers 
had begun to overturn traditional views of those thought 
to be authority figures (such as leaders of the Christian 
Church and the theories of the ancient Greeks). For 
example, new continents were being discovered and the 
layout of land masses across the Earth was being deter-
mined. A fundamental importance (as recognized much 
earlier by Al Muqaddasi) was beginning to be placed 
on the role of real-world experience. This meant that 
determining whether or not there was a Southern Ocean 
land mass could only be established through experi-
ence and not by just reading the works of Aristotle. The 
importance of experience over authority was a central 
theme of the development of science during this period. 
However, it was because geography was inextricably 
linked to exploration, patriotism and colonization that 
it was considered an important subject by the society of 
the time. Geographers were making the key advances in 
discovering new lands, mapping them, changing people’s 
perception of the shape and size of features of the Earth 
and bringing potential ‘wealth’ to nations that conquered 
and colonized others.

In order to understand contemporary practice in 
 physical geography it is therefore necessary to know 
something about the history and development of the 
subject. This chapter will briefly describe the way 
 physical  geography has developed. It will then move on 
to  discuss how the scientific method has been applied 
by physical  geographers to studies of the  environment. 
The  remaining parts of the chapter will look at the 
 principles of and approaches to (i) data collection from 
the  environment, (ii) laboratory research and (iii) numeri-
cal modelling, all of which are important methods of 
 physical geography.

1.2 Historical development of  
physical geography

1.2.1 Physical geography before 1800

The ancient Greeks were interested in the shape and 
topography of the Earth. Aristotle (∼3849322 BC) 
 logically demonstrated using evidence from lunar eclipses 
(when the Earth’s shadow blocks the Sun’s light from 
reaching the Moon) that the Earth was probably  spherical. 
Eratosthenes (∼2769195 BC), known as the ‘Father of 
Geography’, developed models of the Earth using paral-
lels and meridians and using surveying techniques to 
determine the circumference of the Earth with amazing 
accuracy compared to today’s satellite measurements. This 
Greek learning was also passed to Roman geographers, 
who produced maps and topographic descriptions of 
places and their history, supporting military expansion, 
and they also had a philosophical interest in the relations 
between humans and the environment.

Between the time of the Roman Empire and the 
 sixteenth century, European science progressed very slowly. 
Often scholars rejected anything that seemed to go against 
the teachings of the Christian Church. In the Middle East, 
however, Arab geographers such as Al Muqaddasi (who 
lived between AD 945 and 988) were pioneering fieldwork 
whereby observations were given precedence. Indeed 
Al Muqaddasi stated that he would not present anything 
unless he had seen it with his own eyes. Such Arab geog-
raphers maintained the Greek and Roman techniques and 
developed new ones. Arab traders travelled throughout 
Asia, Africa and the Indian Ocean and added a great deal 
of geographical knowledge to update the classical sources. 
Any European geographical work was trivial in compari-
son with the huge amount published by Islamic writers of 
the Middle Ages. Exploration and learning also flourished 
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of the Earth became more reliable. Radioactive elements 
such as uranium and strontium are unstable and decay at 
a steady rate. Uranium-238, for example, decays into lead-
206. Comparing the ratio of these two elements allows us 
to determine how much time has passed since the uranium 
sample was pure when the rock solidified. Radioactive 
decay also gives off heat and we can determine the rate of 
Earth cooling to  determine a time when it formed. The 
Earth is in fact around 4.6  billion years old. The oldest 
rocks that have been found on the Earth date to about 
3.9 billion years ago.

1.2.2.2 Darwin, Davis and Gilbert

Charles Darwin was a brilliant scientist who collected and 
organized specimens. He read some of the writings on 
 uniformitarianism and extended these ideas to  biology. 
The theory of evolution suggests that the diversity of 
species occurs due to continuous, slow modifications to 
genetic traits over very long periods of time. Darwin’s 
The Origin of  Species published in 1859 was hugely 
influential in the field of science and in society in general. 
Indeed it has often been referred to as the ‘book that 
shook the world’. The book outlined how there could 
be a  relatively gradual change in the characteristics of 
 successive  generations of a species and that higher plants 
and animals evolved slowly over time from lower beings. 
This evolution occurred as a result of competition within 
local interacting communities (see Chapters 10–12). 
 Darwin’s book helped throw the idea that there was a 
complete difference between humans and the animal world 
into turmoil as he reinforced the suggestion that humans 
evolved from lower beings. With the idea that humans 
could have evolved from lower beings came the undermin-
ing of traditional religious opinions. However, although 
some religious leaders did embrace Darwinism at the 
time, the theories were very different from those that had 
come before. These ideas radically shook a society where, 
because of the increasing availability of printed books and 
papers, intellectual knowledge was being transferred in 
greater quantity than ever before.

Darwin’s ideas influenced most areas of science at the 
time. The idea of ‘change through time’ was reflected in 
evolutionary attitudes to the study of landforms follow-
ing Darwin’s own 1842 study of the evolution of coral 
islands which was particularly influential in relation to the 
‘cycle of erosion’ idea promoted by W.M. Davis (Gregory, 
1985). The approach recommended by Davis, who was 
a very revered geomorphologist, dominated approaches 
to physical geography from the late nineteenth century 

1.2.2 Physical geography between  
1800 and 1950

1.2.2.1 Uniformitarianism

Prior to the early nineteenth century the prevailing belief 
of the western world had been that the Earth was created 
in 4004 BC. The landscapes of the Earth were thought 
to be a result of catastrophic events. For example, it was 
thought that river valleys were scoured out during the bib-
lical flood and that peatlands were remnants of the slime 
left behind after the flood receded. However, the increas-
ing scientific knowledge acquired between the sixteenth 
and the end of the nineteenth centuries began to lead to 
different views developing. One new idea that emerged, 
for example, was that the Earth’s landscapes gradually 
changed over time rather than simply being affected by 
one or two sudden catastrophic events. Turner (1757), for 
example, showed that if you dug a small hole in a peat-
land, new peat would form in the hole after a few years 
thereby showing that peat was not the detritus left behind 
from a major flood. One of the most persistent and influ-
ential themes to affect physical geography and especially 
geomorphology was the Theory of  the Earth published by 
James Hutton in 1795 and clarified by Playfair (1802) in his 
Illustrations of  the Huttonian theory of  the Earth. Hut-
ton and Playfair were scientists who examined the Earth’s 
landscapes and tried to understand their formation. Hut-
ton’s theory rejected catastrophic forces as the explanation 
for environmental features and gave rise to a school of 
thought known as uniformitarianism (Gregory, 1985). The 
central component of this concept is that  present-day pro-
cesses that we can observe should be used to inform our 
understanding of past processes that we cannot observe. 
In other words, many of the processes we can see today are 
probably the same as those that occurred in the past and so 
we can infer what went on in the past from understanding 
contemporary environmental processes. Uniformitarian-
ism propagated the idea that ‘the present is the key to the 
past’. Although this idea was very satisfactory in terms of 
the processes for understanding the past, of course it can-
not be assumed that the rates at which  processes operate 
today (e.g. weathering of rock) are the same as those that 
occurred in the past.  Nevertheless it was still recognized 
that given enough time a stream could carve a valley, ice 
could erode rock, and sediment could accumulate and 
form new landforms. Hutton speculated that millions of 
years would have been required to shape the Earth into its 
contemporary form. It was not until the early 1900s and 
the discovery of radioactivity that estimates of the age 
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the Davisian ideas were applied by many to help interpret 
landscapes across the globe (e.g. Cotton, 1922, applied 
the ideas to parts of New Zealand and Wooldridge and 
Linton, 1939, produced a Davisian interpretation of 
south-east England). In plant geography and ecology a 
similar influence was being expressed by Clements (1916, 
1928) in his concept of succession (see Section 11.4.3 in 
Chapter 11). It is notable, however, that two themes of 
Darwin’s work ((i) struggle and selection; (ii)  randomness 
and chance) did not have an immediate impact on 
physical geography (Stoddard, 1966). Indeed the unique 
 contribution of Darwin’s theory, which was ‘random 
 variation’ whereby random change could occur to species 
from one generation to the next, did not really appear in 
work by physical geographers until the 1960s (Gregory, 
1985). Nevertheless the theme of evolution provided an 
historical perspective to physical geography which still 
dominates geomorphology, studies of soils, biogeography 
and climatology.

An alternative approach that was advocated at the same 
time as the Davisian approach was that of G.K. Gilbert. 
Gilbert, an explorer of the American West, wanted to 
understand why particular landforms developed rather 
than just classify them as being youthful or mature. In 
order to understand landform development he recognized 
the importance of describing physical processes and 
 deriving systems of laws that determined how a landform 
could change. He attempted to apply quantitative methods 
to geological investigations. His ideas, however, were not 
taken on board during an era dominated by the  descriptive 
techniques offered by Davis. It was not until the 1950s 
that physical geography came to revisit his approach and 
that Gilbert’s ideas finally won favour. Until the 1950s, 
 therefore, physical geography was largely descriptive 
and was concerned with regions. It was concerned with 
the evolution of environments and their classification. 
There were virtually no measurements of environmental 
processes involved and if you look at geography books 
from that period you will see that they are structured by 
regions and simply describe regional climates, landscapes, 
resources and trade (e.g. L. Dudley Stamp’s 1949 book 
The world: A general geography).

1.2.2.3 Divisions of physical geography

The early twentieth century saw a number of advances 
which resulted in identifiable branches in physical 
 geography being developed. Davis and Gilbert helped 
form the field of geomorphology, while Russian scientists 
such as Dokuchaev formed the study of soils (pedology) 

through until the 1950s. Davis suggested in 1889 that 
the normal cycle of erosion could be used to classify any 
landscape according to the stage that it had reached in the 
erosion cycle. He termed this the ‘cycle of life’, which was 
a rather biological metaphor for landform development. 
Figure 1.3 shows the Davisian cycles of erosion. A youthful 
uplifted landscape begins to be dissected by rivers. As the 
landscape matures these valleys become wider and more 
gently sloping until eventually all that remains is a flat, old 
landscape (a peneplain). The great success of the Davisian 
approach, dominating popular physical geography for 
60 years, was due to the fact that it was simple and could 
easily be applied by people to a wide range of landscapes. 
As a result of these ideas people then tried to determine 
the history of an area by establishing which stage of the 
Davisian cycle it was in. This approach was also known as 
denudation chronology. While Davis had based his ideas on 
the case study of the Appalachians in the United States, 

Figure 1.3 The Davisian cycles of erosion: (a) young uplifted stage with 
very limited incision; (b) a mature stage with deep valley incision and 
complex topography; (c) an old eroded landscape with few topographic 
features. (Source: after Davis, 1889)

(b) Mature

Deep and widespread valley incision

(a) Young

Recently uplifted with new incision

(c) Old

Almost flat, featureless peneplane, with the landscape eroded away
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physical real-world measurements. It was also at this 
time that Hack (1960), a physical geographer, went into 
the  Appalachians (coincidentally the very heart of the 
Davisian theory) and realized that landscapes were more 
delicately adjusted and that there was some form of equi-
librium between  rivers and landscapes. Box 1.1 describes 
these equilibrium approaches and their limitations.

It was also during this time that the work of 
G.K.  Gilbert was revisited and his approach eventually 
embraced. This was largely due to the pioneering studies 
of the hydrologist Robert Horton and the development 
of his ideas by Strahler and his graduate students, who 
included Stanley Schumm, Marie Morisawa, Mark Melton 
and Richard Chorley. The 1950s are often referred to as the 
time of a quantitative revolution in geography due to the 
move away from description and towards measurement. 
Work began to concentrate on smaller spatial scales where 
processes could be measured during short-term studies.

1.2.3.2 Functional physical geography

However, although quantitative techniques were being 
employed these were not necessarily those that Gilbert had 
proposed. The measurements that were being performed 
in the 1950s and 1960s often did not allow us to evaluate 
or understand physical processes properly. They tended to 
be quantitative descriptions rather than the measurement 
of processes. For example, in 1953, Leopold and Mad-
dock, physical geographers who studied rivers, published 
results of a survey of streams and rivers in the central and 
south-west United States. They found that stream width, 
depth and velocity increased in proportion to the discharge 
to the power of a given number (e.g. width is proportional 
to discharge to the power of 0.5; see Chapter 19). As the 
discharge increased downstream the equations suggested 
that channel width, mean depth and mean velocity should 
all increase. These equations could be used to make 
 predictions about the discharge or hydraulic geometry of 
rivers across the world (see Chapter 19).

There are two problems with this approach. The first 
is that the relationships determined are purely  statistical 
relationships (or functional relationships). In other 
words, they are just a result of the average value of the 
width, depth, velocity and discharge of all the rivers that 
were measured, but this does not explain why channel 
 dimensions vary in such a way with discharge. These 
sorts of statistical relationship do not explain the  physical 
processes. The second problem is that such functional 
approaches are often not applicable to areas other than 
the area for which they were determined. This is because 

showing how soil types could be related to climate, under-
lying materials and shape of the landscape. The branches 
of climatology and meteorology were beginning to be 
established, accelerated with the development of the 
aeroplane and emergent war needs. Researchers such as 
Clements helped establish biogeographical concepts such 
as succession which enabled ecology–human  interaction 
studies to expand. Broadly, the above fields are still those 
studied today within the discipline, although the subject 
of physical geography is ever evolving and there are many 
interactions between these areas. Some physical geogra-
phy departments, for example, will form groups around 
 ‘biogeoscience’ dealing with biological and chemical 
 processes and transfers in the water, land, atmosphere and 
biosphere system.

1.2.3 Physical geography since 1950

1.2.3.1 The quantitative revolution

In the 1950s, European and North American geography 
was forced to change. It was realized that describing 
places and putting boundaries around them, where in 
fact real boundaries did not actually exist, was no longer 
a useful approach. The 1950s were a time of increasing 
globalization when more people began to travel by air to 
far-flung destinations and when television began to show 
 programmes made around the world, thereby opening up 
people’s experience and views of the world. Global trade 
was increasing and mass-produced items such as refrig-
erators, cars and plastic became much-wanted goods. It 
became more common for people to own goods that were 
made in other countries (e.g. Europeans buying Ford cars 
made in the United States). It therefore became evident 
that there were increasing human and physical interlink-
ages between regions. It was also a period of modernity 
in which there was a societal commitment to order and 
rationality, and to science as the driving force for future 
developments and improvements in infrastructure and 
lifestyles. Physical geography needed to maintain its aca-
demic status and it could no longer do so within a society 
that now had a ‘professional’ science (see below). The 
Davisian cycles of erosion could not be verified from a 
scientific perspective and furthermore they did not explain 
observations. It was too difficult to measure such slow 
processes over such large spatial scales. Arthur Strahler, 
a geomorphologist particularly interested in  rivers and 
landform change, proposed that a new dynamic basis 
for physical geography should be developed based on 
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determined from those that are actually 
occurring in the long term.

timescales (Schumm and Lichty, 1965). 
Note that over short timescales it may be 
possible to identify a static equilibrium 
(no change over time) or a steady-state 
equilibrium (short-term fluctuations 
about a longer-term mean value) while 
over longer time periods the equilibrium 
might be dynamic (shorter-term fluctua-
tions with a longer-term mean value that 
is changing).

However, the concept of equilibrium 
has always been somewhat confusing 
because different people have chosen 
to identify different types of equilibrium 
and because the precise meaning is time 
dependent. Indeed, equilibrium may 
be just as generalized and untestable 
as the Davisian cycle of erosion it was 
meant to replace. Often it depends on 
where and when you measure something 
as to whether it will show equilibrium. 
 Figure 1.5 illustrates this very simply 
for two systems that in the long term 
are behaving differently. Because the 
measurements were done at the times 
shown in Figure 1.5, it was not possible to 
identify the nature of the long-term trend 
and in fact different trends have been 

EquILIbRIum ConCEPtS In 
 PHySICAL GEoGRAPHy

When Hack (1960) completed a field visit 
to the Appalachian Mountains he realized 
that rather than there being one long 
Davisian erosion process whereby rivers 
wore away mountains over time, there is in 
fact a more dynamic set of processes oper-
ating. He rejuvenated Gilbert’s concept of 
‘dynamic equilibrium’. He suggested that 
every slope and every channel in an ero-
sional system are adjusted to each other 
and that relief and form can be explained 
in spatial terms rather than historic ones. 
This work suggested that river profiles 
were never exactly concave. Instead, when 
sediment from a hillslope builds up in a 
river it has to steepen itself in order to 
move that sediment. Once removed, the 
river may become less steep in profile. In 
other words, the rivers and slopes would 
adjust to each other in an attempt to be in 
equilibrium.

Of course, the nature of equilibrium 
investigated depends on the time-
scale under investigation. Figure 1.4 
shows forms of equilibrium over three 

box 1.1

Figure 1.4 Equilibrium over three timescales: (a) dynamic equilibrium; (b) steady-state equilibrium; (c) static equilibrium.
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Figure 1.5 The timescale for human meas-
urement makes it very difficult to identify 
long-term trends and the nature of equilib-
rium. Here the measurements are taken at 
two times (t1 and t2) for each case. However, 
because of the timing of the measurements 
we have incorrectly identified the nature 
of the long-term change in each case. In 
(a) we have established a downward trend 
where there is no long-term trend and in 
(b) we have identified no change while the 
 long-term trend is upward.
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local factors can influence the development of a landform 
(such as geology or tree roots on a river bank holding the 
bank together and preventing it from eroding) so that it 
does not conform to the statistical average. Indeed, some-
times it is the unusual cases that we are more interested in 

rather than the average. It was for these reasons that Yatsu 
(1992), a Japanese physical geographer with expertise 
in rock weathering, accused Strahler himself of ‘crying 
wine and selling vinegar’. This means that he thought 
Strahler had advocated a new physical geography founded 
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